Discussion with GABA_A Alliance

Tingwei Mu
Associate Professor
Department of Physiology and Biophysics
Department of Neuroscience
Case Western Reserve University School of Medicine
Cleveland, OH

Justin's Questions

- a) How A1, B2, G2 variants are differing in your experiments? Are some more responsive to certain mechanisms of treatment?
- b) Is there a way to group variants together within each subunit as responding to method # 1, 2, 3, or a combination. Especially if this can be visualized in a chart.
- c) Gain vs. loss of function relating to your experiments. Many of us speak to Dr. Moller's team regularly and we are trained to think in this terminology.
- d) Is the expectation that single agents may modify the disease or is the focus mostly on working toward combinations?

GABA_A receptors and their clinical variants.

Disease-causing mechanism of GABA_A variants.

 Therapeutic strategies to correct the function of pathogenic GABA_A receptor variants.

Epilepsy-associated GABA_A Variants

GABA_A Receptor Missense Variants in NIH ClinVar

GABA _A subunits	Clinical Significance (ClinVar annotation)						
	Pathogenic (including likely)	Uncertain (including conflicting)	Benign				
α1	48	168	16				
β2	39	141	34				
β3	52	162	18				
γ2	26	173	12				

GABA_A Receptor Variants in NIH ClinVar Database

Pathogenicity Prediction of GABA_A Missense Variants Using Artificial Intelligence-based Algorithm

Saturating mutagenesis prediction: any missense variant can be predicted.

Pathogenicity Prediction of GABA_A Variants Tutorial Using Artificial Intelligence-based Algorithm

- Step 1: Go to the following publication: https://www.biorxiv.org/content/10.1101/2023.11.14.567135v1.full
- Step 2: Click "Supplementary Material:

- Step 3: Download the Supplemental Tables to your computer.
 - \triangleright Table S1 is for α 1 subunit.
 - \triangleright Table S2 is for β 2 subunit.
 - Table S3 is for β3 subunit.
 - Table S4 is for γ2 subunit.

Wang YJ, Vu GH, Mu TW (2023) Pathogenicity Prediction of GABA_A Receptor Missense Variants. bioRxiv, DOI: 10.1101/2023.11.14.567135. PMID: 38014242.

Pathogenicity Prediction of GABA_A Variants Tutorial Using Artificial Intelligence-based Algorithm

Step 4: Open the table of your interest: Table S1, α1 subunit; S2, β2; S3, β3; S4, γ2.

AlphaMisser se Rhapsody						
Protein	4		₹,			4
change	AM score AM prediction	RS prob.	RS class	Name	Condition(s)	Clinical significance (Last reviewed)
R94H	0.9265 pathogenic	0.396	neutral	NM_001127644.2(GABRA1):c.281G>A (p.Arg94	r Inborn genetic diseases not provided	Uncertain significance(Last reviewed: Sep 1, 2023)
R94S	0.9959 pathogenic	0.503	prob.delet.	NM_001127644.2(GABRA1):c.280C>A (p.Arg94	∯ not provided	Uncertain significance(Last reviewed: Dec 10, 2020)
W97R	0.9999 pathogenic	0.885	deleterious	NM_001127644.2(GABRA1):c.289T>A (p.Trp97	Å not provided	Uncertain significance(Last reviewed: Jul 1, 2022)
D99G	0.9988 pathogenic	0.746	deleterious	NM_001127644.2(GABRA1):c.296A>G (p.Asp9	9 Idiopathic generalized epilepsy Epilepsy, idiopathic ge	Uncertain significance(Last reviewed: Feb 5, 2022)
F104L	0.9995 pathogenic	0.274	neutral	NM_001127644.2(GABRA1):c.312T>G (p.Phe10	14 Epilepsy, childhood absence 4 Epilepsy, idiopathic ge	Uncertain significance(Last reviewed: Aug 28, 2021)
M108V	0.1763 benign	0.025	neutral	NM_001127644.2(GABRA1):c.322A>G (p.Met10	🕅 ldiopathic generalized epilepsyl Epilepsy, idiopathic ge	Benign(Last reviewed: Feb 3, 2022)
T109I	0.2239 benign	0.18	neutral	NM_001127644.2(GABRA1);c.326C>T (p.Thr10)	9 Idiopathic generalized epilepsylEpilepsy, childhood ab	Uncertain significance(Last reviewed: Sep 24, 2021)
L111P	0.9991 pathogenic	0.833	deleterious	NM_001127644.2(GABRA1):c.332T>C (p.Leu11	1 diopathic generalized epilepsy Epilepsy, idiopathic ge	Uncertain significance(Last reviewed: Jul 25, 2022)
R112L	0.8651 pathogenic	0.237	neutral	NM_001127644.2(GABRA1);c.335G>T (p.Arg11;	2 Epilepsy, idiopathic generalized, susceptibility to, 13 Ep	Uncertain significance(Last reviewed: Aug 21, 2022)
R112Q	0.4379 ambiguous	0.511	prob.delet.	NM_001127644.2(GABRA1):c.335G>A (p.Arg11	2 Inborn genetic diseases Epilepsy, idiopathic generaliz	Conflicting interpretations of pathogenicity(Last reviewed: Dec 1, 2022)
R112W	0.857 pathogenic	0.405	neutral	NM_001127644.2(GABRA1);c.334C>T (p.Arg112	2 Idiopathic generalized epilepsylEpilepsy, childhood ab	Conflicting interpretations of pathogenicity(Last reviewed: May 10, 2023
L113F	0.993 pathogenic	0.342	neutral	NM_001127644.2(GABRA1):c.339A>T (p.Leu11	3 Inborn genetic diseases	Uncertain significance(Last reviewed: Mar 14, 2017)
P124L	0.9982 pathogenic	0.767	deleterious	NM_001127644.2(GABRA1):c.371C>T (p.Pro124	4 Epilepsy, idiopathic generalized, susceptibility to, 13	Likely pathogenic(Last reviewed: Mar 22, 2023)
D125G	0.9991 pathogenic	0.57	deleterious	NM_001127644.2(GABRA1);c.374A>G (p.Asp12	2 Idiopathic generalized epilepsy Epilepsy, idiopathic ge	Uncertain significance(Last reviewed: Aug 27, 2021)
F127V	0.968 pathogenic	0.592	deleterious	NM_001127644.2(GABRA1);c,379T>G(p,Phe12	2 Epilepsy, idiopathic generalized, susceptibility to, 13 Ep	Uncertain significance(Last reviewed: Jun 8, 2022)
H129Y	0.2507 benjan	0.354			Bildiopathic generalized epilepsylEpilepsy, childhood ab	
A136S	0.3673 ambiguous	0.514	prob.delet.	NM_001127644.2(GABRA1);c.406G>T (p.Ala13	6 Developmental and epileptic encephalopathy, 19	Uncertain significance(Last reviewed: Feb 14, 2020)
M141B	0.9022 pathogenic		neutral		1 Epilepsy, childhood absence 4 Ildiopathic generalized	
K144E	0.993 pathogenic				4 Epilepsy, idiopathic generalized, susceptibility to, 13 ld	
R147G	0.993 pathogenic				l'i Idiopathic generalized epilepsy Epilepsy, idiopathic ge	
R147Q	0.9003 pathogenic					Conflicting interpretations of pathogenicity(Last reviewed: Jun 19, 2023
B147W	0.9058 pathogenic					Conflicting interpretations of pathogenicity(Last reviewed: Jan 5, 2023
1148F	0.9493 pathogenic			NM_001127644.2(GABRA1);c.442A>T (p.lle148		Uncertain significance(Last reviewed: Mar 4, 2015)
G152S	0.9889 pathogenic			NM_001127644.2(GABRA1):c.454G>A (p.Gly15		Uncertain significance(Last reviewed: Jan 17, 2022)
M158I	0.989 pathogenic				56 Epilepsy, childhood absence 4 Idiopathic generalized	
M158V	0.7812 pathogenic		neutral	NM_001127644.2(GABRA1);c.472A>G (p.Met15		Uncertain significance(Last reviewed: Aug 15, 2023)
R159T	0.9995 pathogenic			NM_001127644.2(GABRA1):c.476G>C (p.Arg15		Uncertain significance(Last reviewed: Jan 24, 2020)
T161K	0.9973 pathogenic			NM_001127644.2(GABRA1):c.482C>A (p.Thr16		Uncertain significance(Last reviewed: May 16, 2022)
V162G	0.9713 pathogenic		neutral		2 Epilepsy, idiopathic generalized, susceptibility to, 131Id	
V162M	0.7582 pathogenic		neutral	NM_001127644.2(GABRA1):c.484G>A (p.Val16		Uncertain significance(Last reviewed: Jan 14, 2015)
R163K	0.1618 benign	0.236		NM_001127644.2(GABRA1):c.488G>A (p. Vario		Uncertain significance(Last reviewed: Sep 6, 2019)
C166W	0.9996 pathogenic				8 Epilepsy, childhood absence 41Idiopathic generalized	
P167S	0.6544 pathogenic			NM_001127644.2(GABRA1):c.499C>T (p.Pro16		Uncertain significance(Last reviewed: Jun 1, 2018)
H178Q	0.9515 pathogenic				7 Not provided 8 Idiopathic generalized epilepsyl Epilepsy, idiopathic ge	
G185V	0.9957 pathogenic				5 Epilepsy, childhood absence 4 Idiopathic generalized	
Y187C	0.965 pathogenic				7 Epilepsy, childriood absence 4 (doparnic generalized) 7 Epilepsy, idiopathic generalized, susceptibility to, 131Id	
Y187D	0.9836 pathogenic				7 Epilepsy, idiopathic generalized, susceptibility to, 1310	
Y187F	0.4446 ambiguous				71 Epilepsy, idiopathic generalized, susceptibility to, 13 71 Epilepsy, idiopathic generalized, susceptibility to, 131Ep	
A188D	0.9985 pathogenic				ri cpilepsy, idiopatriic generalized, susceptibility to, 1914 8 Idiopathic generalized epilepsyl Epilepsy, idiopathic ge	

Protein Quality Control of GABA_A Receptors in the Endoplasmic Reticulum

Classification of GABA_A Variants According to Molecular Functions

Class I: Proteostasis defect.

Folding, assembly, degradation, aggregation, trafficking, endocytosis.

Class II:

Electrophysiology defect.

Ligand binding, channel gating, current kinetics.

Class III: Nonsense and frameshift.

Class IV: Others

Epilepsy-associated GABA_A receptor α1 variants

All selected $\alpha 1$ variations cause loss of function of GABA_A receptors

Most selected α 1 variations reduce their trafficking to the cell surface

Epilepsy-Associated GABA_A variants are Subject to ER-Associated Degradation

A missense mutation (A322D) in TM3 region of α 1 subunit causes misfolding and degradation of the α 1 subunits, leading to an autosomal dominant form of juvenile myoclonic epilepsy (ADJME).

A Pharmacological Chaperoning Strategy to Correct GABA_A Variant Function

- Proteostasis regulators: folding enhancers.
- Pharmacological chaperones: receptors-specific.
 - ➤ Direct GABA_A receptor binders.

Pharmacological Chaperone Strategy to Restore GABA_A function

Pharmacological chaperones directly bind GABA_A receptors to stabilize them, and thus promote their forward trafficking.

Screening of GABA_A Regulators Identified Effective Pharmacological Chaperones

Hispidulin and TP003 Increase the protein levels of pathogenic GABA_A variants

Hispidulin and TP003 Enhance the Functional Surface levels of pathogenic GABA_A variants

Surface Biotinylation Assay

Patch-Clamping Electrophysiology

Hispidulin and TP003 Enhance the Surface Staining of pathogenic GABA_A variants in iPSC-derived Neurons

Proteostasis Regulator Strategy to Restore GABA_A function

- Activators of the unfolded protein response (UPR)
- ➤ Ca²⁺ channel regulators, such as verapamil.
- FDA-approved drugs, such as dinoprost and dihydroergocristine.

High-throughput Screening to Identify Proteostasis Regulators

GABA_AR

Chemiluminescence
Assay to quantify
GABA_AR total
expression level

FDA-approved drug library screening

Screening Identified Effective Proteostasis Regulators

- DNP and DHEC cross the blood-brain barrier.
- DNP is prescribed to induce labor.
- DHEC is used to reduce blood pressure and treat dementia.

DNP and DHEC Increase the Peak Current of Mutant Receptors

Summary

- Reduced surface trafficking and loss of function of GABA_A receptors is a major disease-causing mechanism for GABA_A variants.
- Restoring proteostasis pharmacologically corrects the surface expression and function of pathogenic GABA_A receptors, representing a promising therapeutic strategy to treat GABA_A variant-related genetic epilepsy.
- Several lead compounds, such as hispidulin and dihydroergocristine, were identified as effective regents to correct the function of GABA_A variants. Their further development is needed for translational application.

Lab Members

- Dr. Megan Wang
- Dr. Peipei Zhang
- Dr. Lisa Boinon
- Taylor Benske (PhD student)
- Marnie Williams (PhD student)
- Chelsea (Xi) Chen (PhD student)
- Giang Vu (undergraduate)
- Adrian Palumbo (undergraduate)
- Shahyan Khan (undergraduate)
- Anjali Jawa (high school student)

Lab Alumni

- Dr. Xu Fu
- Dr. Meng Wang
- Dr. Xiaojing Di
- Dr. Dongyun Han
- Kate Fu (PhD student)
- Angela Whittsette (Technician)
- Yingying Yang (Technician)
- Hailey Seibert (Undergraduate)
- Ryan Gilbert (Undergraduate)

Funding

NIH, NINDS.

Acknowledgment

Collaborators

- Jeffery Kelly (Scripps)
- Luke Wiseman (Scripps)
- Jing-Qiong Kang (Vanderbilt Univ)
- Angelo Keramidas (Univ of Queensland)
- Raad Nashmi (Univ of Victoria)
- Ashleigh Schaffer (Case Western)
- Chris Richards (University of Kentucky)

