

# GABA<sub>A</sub>-related disorders Including *GABRB3*

Katrine M Johannesen

MD, PhD

Denmark



### A bit about me

- MD, PhD
- PhD in epilepsy genetics from the Danish Epilepsy Centre
- Current research focus: GABA-related disorders, including GABRB3, GABRA1, GABRA3, GABRA5, GABRB2, GABRG2, GABRA2 etc.
- Working to become a clinical geneticist at the University Hospital of Copenhagen





# Vocabulary

- Phenotype: the clinical presentation of a patient. The seizure types, cognitive skills, motor development etc.
- **Genotype**: the genetics of a patient. Variant type (missense, nonsense or others), the inheritance of the variant (*de novo*, maternal, paternal) and the exact variant: c.123A<G, p.(Arg346Cys), *de novo*
- Variant: Genetic mutation / spelling error in a gene
  - Please ask if unclear!

### **GABA** in the human brain



- GABA is the most important inhibitoric neurotransmitter in the brain. Used in 1/3 of all neuronal synapses.
- GABA<sub>A</sub> receptors forward these inhibitory signals.

# **GABA**<sub>A</sub> receptors

- Pentameric receptors
- More than 19 different subunits, some more common than others
- Subunit composition differs dependent on receptor localization

α β
CL γ



## **GABA**<sub>A</sub> receptor genes



Paraloge genes.

Four transmembrane domains.

TM2 and TM3 constitute "the inside" of the channel.



### **GABRB3** – a case presentation

- 3-year-old boy with developmental and epileptic encephalopathy (DEE)
- Hypotonia and severe developmental delay
- Seizures began at three months of age
- Refractory epilepsy with 10-20 seizures daily, several different seizure types, such as focal, myoclonic and atonic seizures
- Treatment tried: levetiracetam, ketogenic diet, vigabatrin (which caused severe hypotonia, somnolence, respiratoric distress)
- EEG showed a multifocal pattern
- De novo variant in GABRB3



### **GABRB3** – a case presentation

- 12-year old girl with genetic generalized epilepsy (GGE)
- Normal development
- Seizures began at 12 months
- Seizures were febrile seizures and later also atonic and myoclonic-atonic seizures
- EEG showed generalized spike and slow waves
- Treated with a valproate, seizure free since 18 months
- Has learning difficulties
- De novo variant in GABRB3



Afdeling for Genetik

### **Metods - Patients**



- Patient data collected internationally through:
  - Existing clinical network
  - GeneMatcher
  - Patient organizations / facebook

## **Metods – functional analysis**

- GABA sensitivity in missense variants
- Using frog eggs!
- Done at our collaborating lab in Sydney



Schematic illustration of two electrode voltage clamp. The

Figure is created with Biorender.com







# **GABRB3** project

- Dominant disorder
- 85 patients in the project (current number 138)
  - = 54 different genetic variants
- Both de novo and inherited variants
- Large spread in phenotype
  - Seizure onset ranged from 0 to 14 years!
  - Seizure types were diverse



# **GABRB3** project

- Functional studies in missense variants showed:
  - gain of function = increased activity of the receptor
  - loss of function = decreased activity of the receptor
  - no change = similar to wildtype receptors

a Concatenated receptor design



cDNA construct where four linkers (L) connect the five subunits in a  $\alpha 1\beta 3\gamma 2$  pentamer Variant  $\beta 3$  subunits are introduced in the second position (heterozygous receptors)



**b** Electrophysiological recordings of representative GABRB3 variants





Afdeling for Genetik

# **GABRB3** project

 Correlation between functional outcome and phenotype



Age at onset

a







# **GABRB3** project

### Patients with gain of function variants:

- First seizure at 2.5 months of age
- Seizure types: focal seizures, focal to bilateral tonic-clonic seizures, myoclonic seizures, tonic seizures and epileptic spasms
- Seizure outcome: Refractory epilepsy. Adverse effects to GABA enhancers
- EEG: Severely disorganized background with rapid activity and multifocal epileptiform abnormalities
- Intellectual disability: Severe
- Other characteristics: Hypotonia, microcephaly (only GOF)

| Variant GOF       |
|-------------------|
| Glu77Lys          |
| Val78Phe          |
| Leu124Phe         |
| Leu170Arg         |
| Thr185lle         |
| Tyr245His         |
| Ser254Phe         |
| Leu256GIn         |
| Ile280Phe         |
| Thr281Ala         |
| Leu284Met/Arg/Pro |
| Thr287lle         |
| Thr288Asn         |
| Leu293His         |
| Ile300Thr         |
| Ala305Thr/Val     |

lle306Thr

# **GABRB3** project

#### Patients with loss of function variants:

- First seizure at 10.5 months
- Seizure types: Febrile seizure (LOF only), bilateral tonic-clonic seizures, epileptic spasms, myoclonic, atonic and tonic seizures
- Seizure outcome: Treatment responsive (VPA, GABA enhancers). Adverse effects with sodium channel blockers.
- EEG: Normal or mild slowed background and generalized spike and slow waves
- Intellectual disability: mild to severe
- Other characteristics: ADHD and autism

| ar |  |  |  |
|----|--|--|--|
|    |  |  |  |
|    |  |  |  |

Ser76Cys

Met80Lys/Thr

Asn110Asp

Asp120Asn

Lys127Arg

Thr157Met

Leu165Gln

Arg166Ser

Glu178Gly

Glu180Gly

Tyr182Phe

Tyr184His

Phe225Cys

Tyr230His

Arg232GIn

Gln249Lys

Thr281lle

Pro301Leu

Tyr302Cys

Phe318Ser

Asn328Asp

Afdeling for Genetik

## **GABRB3** project

#### Implications:

- Genetic counselling
- Treatment



Afdeling for Genetik

#### nature communications

Explore content > About the journal > Publish with us >

nature > nature communications > articles > article

Article | Open Access | Published: 05 April 2022

#### Gain-of-function and loss-of-function *GABRB3* variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies

Nathan L. Absalom, Vivi

https://doi.org/10.1093/brain/awab391

BRAIN 2022: 145; 1299-1309 | 1299

Annals of Neurology <onbehalfof@manuscriptcentral.com>

to 08-12-2022, 22:17

elisa.musto86@gmail.com; vivian.liao@sydney.edu.au; Katrine Marie Harries Johannesen; Christina Dühri

Forsigtig: Ekstern mail

08-Dec-2022

Dear Dr Musto:

Your manuscript entitled "GABRA1-related disorders: from genetic to functional pathways" has staff would like you to know that we strive for rapid turnaround time for our authors, and that

Your manuscript # is ANA-22-1636

Please direct all communication regarding your submissions to Daniel Roe, PhD, Managing Edi

You can view the status of your manuscript at any time by checking your Author Center at http://





Philip K. Ahring, <sup>1</sup> OVivian W. Y. Liao, <sup>1</sup> Elena Gardella, <sup>2,3</sup> Katrine M. Johannesen, <sup>2,3</sup> Ilona Krey, <sup>4</sup> ® Kaja K. Selmer, <sup>5,6</sup> Barbro F. Stadheim, <sup>6</sup> Hannah Davis, <sup>7</sup> Charlotte Peinhardt, <sup>7</sup> Mahmoud Koko, <sup>8</sup> Rohini K. Coorg, <sup>9</sup> Steffen Syrbe, <sup>10</sup> Astrid Bertsche, <sup>11,12</sup> Teresa Santiago-Sim, <sup>13</sup> Tue Diemer, <sup>14</sup> Christina D. Fenger, <sup>2,3</sup> Konrad Platzer, <sup>4</sup> Evan E. Eichler, <sup>15,16</sup> Holger Lerche, <sup>8</sup> Johannes R. Lemke, <sup>4</sup> Mary Chebib<sup>1</sup> and 
 Rikke S. Møller<sup>2,3</sup>

Afdeling for Genetik

## **Future projects**



| 0 |                          |
|---|--------------------------|
| 0 | GABRA3                   |
| 0 | GABRA5                   |
| 0 | GABRA2                   |
| 0 | GABRG2                   |
| 0 | GABRB2                   |
| 0 | Correlation across genes |
| 0 |                          |
| 0 |                          |
| 0 |                          |

Afdeling for Genetik

### N-of-1 trials

Received: 26 September 2019 Revised: 25 October 2019 Accepted: 28 October 2019

DOI: 10.1111/epi.16394

FULL-LENGTH ORIGINAL RESEARCH

**Epilepsia** 

#### Personalized medicine: Vinpocetine to reverse effects of *GABRB3* mutation

J. Michael Andresen<sup>2</sup> | Bryant C. Gay<sup>2</sup> | Gregory R. Stewart<sup>2</sup> Santoshi Billakota<sup>1</sup> Nikolai B. Fedorov<sup>3</sup> | Aaron C. Gerlach<sup>4</sup> | Orrin Devinsky<sup>5,6</sup>

<sup>1</sup>NYU Langone Comprehensive Epilepsy Center, New York University Langone School of Medicine, New York, New York

<sup>2</sup>Pairnomix, Plymouth, Minnesota

<sup>3</sup>Charles River Discovery, Cleveland, Ohio

<sup>4</sup>Icagen, Durham, North Carolina

<sup>5</sup>NYU Langone Comprehensive Epilepsy Center, Department of Neurology, Neurosurgery, and Psychiatry, New York University Langone School of Medicine, New York, New York

<sup>6</sup>Saint Barnabas Institute of Neurology and Neurosurgery, Livingston, New Jersey

#### Correspondence

Santoshi Billakota, NYU Langone Comprehensive Epilepsy Center, NYU Langone School of Medicine, 223 East 34th St, New York, NY 10016. Email: santoshi.billakota@nyumc.org

#### Abstract

Objective: To screen a library of potential therapeutic compounds for a woman with Lennox-Gastaut syndrome due to a Y302C GABRB3 (c.905A>G) mutation.

Methods: We compared the electrophysiological properties of cells with wild-type or the pathogenic GABRB3 mutation.

Results: Among 1320 compounds, multiple candidates enhanced GABRB3 channel conductance in cell models. Vinpocetine, an alkaloid derived from the periwinkle plant with anti-inflammatory properties and the ability to modulate sodium and channel channels, was the lead candidate based on efficacy and safety profile. Vinpocetine was administered as a dietary supplement over 6 months, reaching a dosage of 20 mg three times per day, and resulted in a sustained, dose-dependent reduction in spikewave discharge frequency on electroencephalograms. Improved language and behavior were reported by family, and improvements in global impression of change surveys were observed by therapists blinded to intervention.

Significance: Vinpocetine has potential efficacy in treating patients with this mutation and possibly other GABRB3 mutations or other forms of epilepsy. Additional studies on pharmacokinetics, potential drug interactions, and safety are needed.

#### KEYWORDS

epilepsy, Lennox-Gastaut, precision medicine, refractory, vinpocetine

Introduction of VNP 60mg/day

Seizure free for 16 months



Remarkable improvement on OCD, anxiety and depression

Better scores on neuropsychological tests

GABA sensitivity for α1<sup>R112Q</sup> variant receptor decreased by ~2.5 fold





Afdeling for Genetik

## Future project— GABA portal



### Welcome to the SLC6A1 Portal

An interactive website for families, clinicians, and researchers dedicated to comprehending *SLC6A1*-related disorders



Z

SLC6A1, its function and associated disorders

**Basic Information** 

Ť

Foundations, family groups, links to resources, and more

Educational resources

دړ

Comprehensive information on variant interpretation

Variant Analysis

<u></u>

Filter and select a subset of variants for research

Research

Visit our other Portals

SCN-Portal & GRIN-Portal

You want to join the project or provide feedback?

Please contact us!

Afdeling for Genetik

